_	uesti umb		Answer	Notes	Marks
1	а		B (red-brown liquid)		1
	b		2 (1) 2	Accept multiples and fractions	1
	C	i	a halogen/an element cannot displace itself OR no reaction / no displacement (would occur)	 Accept a halogen does not react with <u>its own</u> (halide) ions Accept correct reference to a specific halogen/halide ion Accept nothing happens Reject any references to a halogen having the same reactivity as a halide (ion) 	1
		ii	a halogen cannot displace a more reactive halogen OR a halogen cannot react with the (halide) ions of a more reactive halogen	Reject any references to a halogen having a different reactivity to a halide (ion) Accept correct reference to a specific halogen/halide ion	1
			potassium bromide	Ignore any formula Reject any other species with corrected name	1

-	Question number			Answer	Notes	Marks
1	1 iv M1		M1	(correct products) KCI AND I ₂	Accept in either order	
			М2	2 2	M2 DEP on M1	
	С	V		(both) reduction <u>AND</u> oxidation occur (in the same reaction)	Accept (both) gain <u>AND</u> loss of electrons occurs (in the same reaction) Accept (both) gain <u>AND</u> loss of oxygen occurs (in the same reaction) Accept (both) increase <u>AND</u> decrease of oxidation states/oxidation numbers (in the same reaction) Ignore incorrect species being oxidised and reduced / losing and gaining electrons	1

vi	M1	(species) I^- / iodide (ion)		1
	M2	(reason) loss of electron(s)	Accept increase in oxidation number OR oxidation number changes from -1 to 0	1
			Ignore number of electrons lost	
			M2 DEP on M1 correct, or near miss e.g. iodine	
			Total 10	marks

Question number		Answer		Notes	Marks
2 a	a				2
	Halogen	Colour	Physical state		
	bromine		liquid	M1 (bromine) liquid / (l)	
	iodine	black		M2 (iodine) black allow (dark) grey	
h	1. 14 () 1. 16 () 1				2
b	•• ×× • Br * P *	Br :		M1 three bonding pairs of electrons correctM2 rest of electrons correct	2
	: Br : ••			Accept any combination of dots and crosses Ignore circles	
С	$PBr_3 + 3H_2C$	$D \rightarrow 3$ HBr +	- H ₃ PO ₃	M1 all formulae correct	2
				M2 balanced M2 DEP on M1	
					l 6 marks

Question number	Answer	Accept	Reject	Marks
3	 M1 – add (aqueous) chlorine to (aqueous) KBr M2 – (solution) turns orange 	yellow / brown	red	5
	M3 – add (aqueous) bromine to (aqueous) KI	red-brown / orange	yellow	
	M4 - (solution) turns brown	correct ionic equations		
	$\textbf{M5} - Cl_2 + 2KBr \rightarrow Br_2 + 2KCl$			
	OR			
	$Br_2 + 2KI \rightarrow I_2 + 2KBr$	accept $Cl_2 + 2KI \rightarrow I_2 + 2KCl$ if chlorine is added to potassium iodide		
	Ignore state symbols			

Total 5 marks

		estion Answer		Answer	Notes	Marks
4	а			bromine AND iodine	Accept symbols and formulae Do not accept names or formulae of ions	1
	b	i		hydrogen chloride	Ignore gas	1
				hydrochloric acid	Ignore aqueous / solution / dilute / concentrated	1
					Award 1 for both correct names in wrong places	
		ii	M1	white smoke/solid/ cloud	Accept ring Reject precipitate Ignore powder / fumes	1
			M2	$NH_3 + HCI \rightarrow NH_4CI$	Ignore state symbols	1
		iii	M1	white precipitate		1
			M2	aq s aq	Award 1 for s and 1 for both aq	2

	uesti umb		Answer	Notes	Marks
4	С	i	hydrogen / H ₂	Ignore H	1
	ii		ii becomes smaller / disappears	Accept dissolves Ignore references to bubbles	1
		iii	acidic / contains (hydrochloric) acid / hydrogen ions / H ⁺ (ions)	Accept pH below 7 or any value below 7	1
		iv	not acidic / no (hydrochloric) acid (formed) / no hydrogen ions / no H ⁺ (ions) OR HCI/hydrogen chloride does not ionise / dissociate	Reject references to alkali(ne) or pH above 7 Ignore neutral Do not accept it/hydrochloric acid in place of HCI	1
Т	ОТ	A L			12

Question number	Answer	Accept	Reject	Marks
5 (a)	(giant) ionic		any other	1
	IGNORE three-dimensional / lattice		answer	
(b)	M1 and M3 can be scored from labelled diagrams			
	sodium:			
	M1 – positive ions/cations/Na ⁺ and (delocalised/sea of) electrons IGNORE metal ions	Sodium / metal ions	atoms/molecu les	1
	M2 – (electrostatic) forces/attraction between positive		nuclei	
	ions/cations/Na ⁺ and (delocalised) electrons IGNORE references to metallic bonding		intermolecular forces	1
	sodium chloride:			1
	M3 – positive and negative ions/cations and anions / Na ⁺ and Cl ⁻	oppositely charged	atoms/molecu	
	(ions)	ions	les nuclei	1
	M4 – <u>electrostatic</u> forces/attraction between (oppositely charged/positive and negative) ions / cations and anions / Na ⁺ and Cl ⁻	chlorine ions if stated as being negative	intermolecular forces	
	IGNORE references to ionic bonding		reference to covalent loses M4	1
	comparison:			
	M5 - forces in Na are weak <u>er</u> (than forces in NaCl) can be awarded even if an incorrect description of the forces has been given.	less energy required to overcome forces in Na		
	[standalone]	bonds / lattice for forces		
		ORA		

Question number	Answer	Accept	Reject	Marks
5 (c)	M1 - $n(Na) = \frac{0.138}{23}$ or 0.006			1
	M2 - $n(H_2) = \frac{1}{2} \times M1$ or 0.003			1
	M3 - vol. $H_2 = 24\ 000\ x\ M2$ or 72 (cm ³)	0.072 <u>dm³</u>		1
	[Mark consequentially. $n(Na)$ and $n(H_2)$ need not be evaluated.]			
	correct final answer on its own without working scores 3			

Questic numbe	-	Answer	Accept	Reject	Mar ks
5 (d)	(i)	M1 - (add dilute) <u>nitric</u> acid	addition of silver nitrate before nitric acid for both M1 and M2		1
		M2 - (add aqueous) silver nitrate	correct formulae throughout		1
		M3 - white precipitate / solid / suspension			1
	(ii)	M3 dependent on M2			
		Reason – it fizzed / a gas was evolved OR	sodium hydroxide is soluble		1
		sodium hydroxide would not fizz / produce a gas			
		IGNORE incorrect identification of gas			1
		X = <u>sodium</u> carbonate / <u>sodium</u> hydrogencarbonate			
(e)		M1 - 8 electrons around Na	any combination of dots and crosses 0 electrons		1
		M2 - 8 electrons around CI. IGNORE inner shells even if incorrect IGNORE starting diagrams showing atoms either with or without arrow to show movement of electron			1
		M3 - correct charge on <u>both</u> Na and Cl [standalone]			1
(f)		M1 - potassium is more reactive than sodium	reactivity increases down Group 1 ORA		1
		M2 - (but) bromine is less reactive than chlorine	reactivity decreases down Group 7 ORA	-ide endings	1
				Total	19